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Introduction 

Larger computer Networks 

Harder control 
and management  

Network decomposition 

The decomposition problem is a way for partitioning a network 
into small components that satisfy some specific properties 
(topology, number of nodes, density, etc.). 
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Introduction 

Unsafe 

configurations 

Safe 

configurations 

Self-stabilizing behavior of a system  
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 F. Belkouch et al. in [IJPDC 02] considered a particular graph 
decomposition problem that consists in partitioning a graph of k2 
nodes into k partitions of order k.  
 

 E. Caron et al. in [Euro-Par 09], C. Johnen et al. in [OPODIS 06],  
    Bein et al. [ISPAN 05] focused on decomposing graphs into clusters.  

 
 B. Neggazi et al. in [SSS 12] considered decomposition of graphs 

into triangles. 

Some self-stabilizing algorithms for 
graph decompositions  
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Star decomposition problem 

This type of decomposition describes a graph as the 
union of disjoint stars.  
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Star decomposition problem 

This type of decomposition describes a graph as the 
union of disjoint stars.  

Star 1 Star 2 

Star 3 
Star 4 
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A uniform decomposition into stars is one in which all 
stars have equal size.  
 
A p-star has one center node and p leaves where p ≥ 1.  
 
 
 
 
 
 
A p-star decomposition subdivides a graph into p-stars  

Star decomposition problem 

Center node 

Leaf node 

Variant of generalized matchings and general graph factor 
problems that were proved to be NP-Complete [D. Kirkpatrick et al. in 
ST0C 78] ,  Journ. Comp. 83] 
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p-Star Decomposition  
of General Graphs 

Graph G = (V,E)  
p=3  
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p-Star Decomposition  
of General Graphs 

Graph G = (V,E)  
p=3  
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p-Star Decomposition  
of General Graphs 

Graph G = (V,E)  
p=3  

Star 1 

Star 2 

Star 3 

Star 4 

Maximal p-star Decomposition 
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This decomposition offers similar paradigm as the Master-
Slaves paradigm used in : 
 
 Grid [M. Mezmaz PDP 07]. 

 P2P infrastructures [A. Bendjoudi Int. J. Grid Util. Comput 09].  

 
 

p-Star Decomposition vs  
Master-Slaves paradigm  

Slaves 

Get tasks 

Task 1 
Task 2 
Task 3 

Task p 

Generate tasks 

Master 

Results 
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Contribution 

The purpose of this work is to  
 
 Develop a distributed and self-stabilizing algorithm for 

decomposing a graph into p-stars. 
 

Operate with an unfair Distributed Scheduler. 
 
 Suppose only local knowledge (Distance-1 knowledge).  
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System Model and Definitions 

 
 

Each node v: 
 
Begin  
 

[If p1(v) then M1] ;  R1  
[If p2(v) then M2];  R2 
........ 
[If pi(v) then Mi];   Ri 

 
End 

p(v) is true -> v is enabled -> Move 

Self-stabilizing  
algorithm 

A self-stabilizing system, regardless of its initial configuration, 
converges in finite time, without any external intervention. [E.W. Dijkstra 74] 
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System Model and Definitions 

Two types of schedulers (daemons) : 

 central (serial). 
 
 Distributed. 

 Special case : Synchronous 

Fairness: 

 Fair. 
 
 Unfair (adversarial).  
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System Model and Definitions 

Two types of schedulers (daemons) : 

 central (serial). 
 
 Distributed. 

 Special case : Synchronous 

Fairness: 

 Fair. 
 
 Unfair (adversarial).  

NB. This work assumes the most general scheduler.  
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System Model and Definitions 

Complexity : 

 Moves 
 

 Steps 
 

 Rounds 
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System Model and Definitions 

Graph G = (V,E),   
 
Assume that each node “v “ has “id”  (locally distinct). 

We denote : - N(v) open neighborhood,  
                    - d(v) degree of a node v, 
                    - p is a positive integer. 

Let be Si is a p-star 
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System Model and Definitions 

Graph G = (V,E),   
 
Assume that each node “v “ has “id”  (locally distinct). 

We denote : - N(v) open neighborhood,  
                    - d(v) degree of a node v, 
                    - p is a positive integer. 

Let be Si is a p-star 

Definition. A p-star Decomposition D of a graph G = (V,E) is a set 
of subgraphs of the form Si = (Vi,Ei) such that the 
sets Vi ⊆ V are disjoint and each Si is a p-star.  

 
D is maximal if the subgraph induced by the nodes of G not 
contained in D does not contain a p-star as a subgraph. 
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Self-stablizing Algorithm for p-star 
Decomposition 

 
 

Impossibility of finding a deterministic 
self-stabilizing algorithm for maximal 
matching in anonymous graph under a 
distributed scheduler. [F. Manne et al. TCS 2009]   

p-star decomposition is a 
generalization of the 
matching problem for which 
p = 1 
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Self-stablizing Algorithm for p-star 
Decomposition 

 
 

Impossibility of finding a deterministic 
self-stabilizing algorithm for maximal 
matching in anonymous graph under a 
distributed scheduler. [F. Manne et al. TCS 2009]   

p-star decomposition is a 
generalization of the 
matching problem for which 
p = 1 

Impossibility result remains valid for p-star 
decomposition for all p ≥ 1 

p-star decomposition algorithm requires a 
mechanism for symmetry breaking 
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 

General idea 

 STEP 1 : The node v with the smallest identifier having 
at least p neighbors becomes master.  

 
 STEP 2 : The p neighbors v1, . . . , vp of v with the 

smallest identifiers become slaves of v.  
 
  The previous steps are repeated for the subgraph of G 

consisting of all nodes except v, v1, . . . , vp .  
 

The challenge is to design an efficient distributed version 
of this algorithm under an unfair distributed scheduler. 
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Let X be a set and p is a positive integer. 
 
Two operators : 

Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 







 


otherwiseXofelementssmallestpthe

pXif
X p 







 


otherwiseXofelementsmallestthe

Xifnull
X


min
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 

If  identifier of    is smaller than identifier of    then we 
note          . 
 
We define that 

v u

uv 

nullvVv  :
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Each node   maintains two variables:  
 

 “ s “ contains the list of pointers to its p slaves  
 “ m “ contains the pointer to the selected master. 

Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 

 swvvNwvM .)()( Denote: 

 ).()..()()( vwswvmwswvNwvS  

If  identifier of    is smaller than identifier of    then we 
note          . 
 
We define that 

v u

uv 

nullvVv  :

v
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SMSD uses the following code permitting a node v to 
compute its new values of snew and mnew. 

Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 

 Rsvsvmvmvsvsvmvmv newnewnewnew ;.:.;.:..... 

Algorithm 1: Star Decomposition (SMSD) 

Nodes: v is the current node 

thenvSvvMIf p ))()((min 

;)(min:.;:. vMmvsv newnew 
else

;:.;)(:. nullmvvSsv new

p

new 
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 

1 
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Graph G is a complete graph  

Let p =3  

Example of executing Algorithm SMSD 
under the synchronous scheduler.  

Initial configuration 
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 

1 
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Graph G is a complete graph  

Let p =3  

Example of executing Algorithm SMSD 
under the synchronous scheduler.  

Round 1 

 
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 
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Graph G is a complete graph  

Let p =3  

Example of executing Algorithm SMSD 
under the synchronous scheduler.  

Round 2 

 
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 
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Graph G is a complete graph  

Let p =3  

Example of executing Algorithm SMSD 
under the synchronous scheduler. 

Round 3 

 
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Final configuration 
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Self-stabilizing Algorithm for p-star 
Decomposition (SMSD) 
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Graph G is a complete graph  

Let p =3  

Example of executing Algorithm SMSD 
under the synchronous scheduler.  

Final configuration 

Single node 
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Correctness proof 

Lemma 1. In a configuration with no node is enabled, the 
following properties hold for each         : 
 
(a) 
 
(b) 
 
(c)  

Vv

...)(.. nullmvandpsvandvNsvthensvIf 

).(.. vNmvthennullmvIf 

....  svandwmvthenswvIf
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Correctness proof 

Lemma 1. In a configuration with no node is enabled, the 
following properties hold for each         : 
 
(a) 
 
(b) 
 
(c)  

Vv

...)(.. nullmvandpsvandvNsvthensvIf 

).(.. vNmvthennullmvIf 

....  svandwmvthenswvIf

Lemma 2. In a configuration with no enabled node the stars 
induced by all nodes v with           form a maximal p-star 
decomposition of G. 

sv.



34 

Convergence  
under unfair distributed scheduler 

A round under an unfair distributed 
scheduler may consist of an infinite 
number of moves.  

The time complexity of the algorithm is measured in rounds.  

Not sufficient to prove that the 
algorithm stabilizes after a finite 
number of rounds.  

Theorem 1 : SMSD requires  
a finite number of moves.  
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Convergence  
under unfair distributed scheduler 

A round under an unfair distributed 
scheduler may consist of an infinite 
number of moves.  

The time complexity of the algorithm is measured in rounds.  

Not sufficient to prove that the 
algorithm stabilizes after a finite 
number of rounds.  

Theorem 1 : SMSD requires  
a finite number of moves.  

For each node v : we distinguish 
• m-move  if v executes rule R and assigns a new value to v.m  
• s-move  if v executes rule R and assigns a new value to v.s  

 

Note: A move can be a m-move and a s-move  at the same time. 
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Convergence  
under unfair distributed scheduler 

Lemma 3. Let         and “e” an execution of Algorithm SMSD 
such that no node    with          makes an s-move in e. Then  
makes at most               s-moves  in e. 

Vv
vu 

2)( vd
u v
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Convergence  
under unfair distributed scheduler 

Lemma 4. The total number of s-moves in any execution of 
Algorithm SMSD is finite. 

Lemma 3. Let         and “e” an execution of Algorithm SMSD 
such that no node    with          makes an s-move in e. Then  
makes at most               s-moves  in e. 

Vv
vu 

2)( vd
u v
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Convergence  
under unfair distributed scheduler 

Lemma 4. The total number of s-moves in any execution of 
Algorithm SMSD is finite. 

Lemma 5. Let    be the maximum node degree in the graph G. 
The total number of m-moves in any execution of Algorithm 
SMSD is at most           , here     denotes the total number of 
s-moves during the execution. 



nC  C

Lemma 3. Let         and “e” an execution of Algorithm SMSD 
such that no node    with          makes an s-move in e. Then  
makes at most               s-moves  in e. 

Vv
vu 

2)( vd
u v
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Theorem1. Algorithm SMSD is a self-stabilizing algorithm for 

computing a maximal p-star decomposition. 

Convergence  
under unfair distributed scheduler 

The complexity ??  
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Complexity analysis 

Lemma 6. After round r0 and in all following rounds, each 
node          satisfies the following properties. 
 
(a) 
 
(b) 

Vv

).(.. vNmvornullmv 

..)()(... nullmvpvdvNsvpsvthensvIf 
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Complexity analysis 

Lemma 6. After round r0 and in all following rounds, each 
node          satisfies the following properties. 
 
(a) 
 
(b) 

Vv

).(.. vNmvornullmv 

..)()(... nullmvpvdvNsvpsvthensvIf 

Lemma 7. After round r1 and in all following rounds, each 
node          with            satisfies Vv umv . ..)(  svandpud
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Complexity analysis 

Lemma 8. Let     be the smallest node in G such that               . Then, 
 
(a) After round     and in all following rounds,  
 
 
(b) Let be                         . After round      and in all following rounds,    
 

*v

.\)(.. *** SGVvallforSsvandSmv  

2r
pvNsvandnullmv )(.. *** 

pvd )( *

).( *** svvS  3r
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Complexity analysis 

Lemma 8. Let     be the smallest node in G such that               . Then, 
 
(a) After round     and in all following rounds,  
 
 
(b) Let be                         . After round      and in all following rounds,    
 

*v

.\)(.. *** SGVvallforSsvandSmv  

2r
pvNsvandnullmv )(.. *** 

pvd )( *

).( *** svvS  3r

 
Lemma 9. Algorithm SMSD stabilizes after at most                    
rounds. 
 

2
1

2 








p

n
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Complexity analysis 

 

Theorem 2. Algorithm SMSD is self-stabilizing algorithm for maximal 

p-star decomposition and converges after at most                    rounds 

under the unfair distributed scheduler using O(p log n) memory. 

2
1

2 








p

n
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Conclusions & future work 

 First self-stabilizing algorithm for graph decomposition into 
disjoint p-stars (SMSD). 

 SMSD operates under the unfair distributed scheduler and 

stabilizes after at most                  rounds. 2
1

2 








p

n
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Conclusions & future work 

 First self-stabilizing algorithm for graph decomposition into 
disjoint p-stars (SMSD). 

 SMSD operates under the unfair distributed scheduler and 

stabilizes after at most                  rounds. 

 The proposed algorithm generalizes maximal matching  algorithms 
where p = 1. The time complexity in rounds of SMSD has the same 
order as the best known self-stabilizing algorithm for maximal 
matching under the synchronous scheduler or the distributed 
scheduler. 

2
1

2 








p

n
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Conclusions & future work 

 SMSD requires at most             moves using the synchronous 
scheduler.  

 
 The exact move complexity of the algorithm under the unfair 

distributed scheduler is unknown.  

)(
2

p

n
O
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Conclusions & future work 

 SMSD requires at most             moves using the synchronous 
scheduler.  

 
 The exact move complexity of the algorithm under the unfair 

distributed scheduler is unknown.  

As future works, we aim to  

 Bound moves complexity of SMSD. 
 

 Generalize SMSD to weighted graphs.  

)(
2

p

n
O
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End 
 


